Reaction Coordinate Master Equation for Transport Problems Beyond Born-Markov

Felix Ivander

May 16, 2023

Outline

(1) Primer on Open Quantum System
(2) Master Equations

- Lindblad Equation
- Bloch-Redfield Equation
- Aside: secular approximation
(3) Reaction Coordinate Master Equation
- Non-equilibrium spin-boson
- Quantum Absorption Refrigerator
- Quantum transport beyond second order
- Effective Hamiltonian Theory at strong coupling
- Markovian dynamics
(4) Outlook

Question 1

How would a quantum system evolve in contact with a thermal environment?

Question 1

How would a quantum system evolve in contact with a thermal environment? \leftarrow Why is this interesting?

Quantum systems in contact with a thermal bath (in nature)

- Photosynthesis is at room temperature

Quantum systems in contact with a thermal bath (in nature)

- Photosynthesis is at room temperature
- Quantum effects in photosynthesis

Quantum biology...

Nature does not rely on long-lives ${ }^{2}$
coherence for photosynthetic ened electronic quantum

Quantum systems in contact with a thermal bath (...in the lab)

- Atomic junction experiments ${ }^{1}$
- Quantum system as a conductor
${ }^{1}$ Ofir Shein Lumbroso, Lena Simine, Abraham Nitzan, Dvira Segal, and Oren Tal, Nature 2018

How would a quantum system evolve in contact with a thermal environment?

- Quantization? Feynman: thermal environment \rightarrow infinitely many harmonic oscillators.

How would a quantum system evolve in contact with a thermal environment?

- Quantization? Feynman: thermal environment \rightarrow infinitely many harmonic oscillators.
- Dynamics? Schrödinger's equation $i \hbar \partial_{t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle$. But...

How would a quantum system evolve in contact with a thermal environment?

- Quantization? Feynman: thermal environment \rightarrow infinitely many harmonic oscillators.
- Dynamics? Schrödinger's equation $i \hbar \partial_{t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle$.

But... Dirac:

- ...laws necessary for the ...large part of physics and the whole of chemistry are thus completely known,

How would a quantum system evolve in contact with a thermal environment?

- Quantization? Feynman: thermal environment \rightarrow infinitely many harmonic oscillators.
- Dynamics? Schrödinger's equation $i \hbar \partial_{t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle$.

But... Dirac:

- ...laws necessary for the ...large part of physics and the whole of chemistry are thus completely known,
- ... the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble...
i.e., $\left|\psi_{S+E}(t)\right\rangle$ is huge but we do not care about the environment part.

One solution is to use a dissipative master equation.

Lindblad equation: Top-Down (short time expansion of the Kraus operator)

The reduced system density matrix satisfies

$$
\begin{align*}
& \langle i| \rho|i\rangle \geq 0 \tag{1}\\
& \operatorname{Tr}\{\rho\}=1 \tag{2}
\end{align*}
$$

Therefore, we'd like to find a quantum map that preserves these properties,

$$
\begin{equation*}
\rho \rightarrow \rho^{\prime}, \quad \text { via } \dot{\rho}=\mathcal{L} \rho \tag{3}
\end{equation*}
$$

[^0]
Lindblad equation: Top-Down (short time expansion of the Kraus operator)

The reduced system density matrix satisfies

$$
\begin{align*}
& \langle i| \rho|i\rangle \geq 0 \tag{1}\\
& \operatorname{Tr}\{\rho\}=1 \tag{2}
\end{align*}
$$

Therefore, we'd like to find a quantum map that preserves these properties,

$$
\begin{equation*}
\rho \rightarrow \rho^{\prime}, \quad \text { via } \dot{\rho}=\mathcal{L} \rho \tag{3}
\end{equation*}
$$

which Lindblad proved to take the general GKLS form ${ }^{2}$

$$
\begin{equation*}
\dot{\rho}=\underbrace{-i[\hat{H}, \rho]}_{\text {unitary }}+\underbrace{\sum_{k} \Gamma_{k}\left(L_{k} \rho L_{k}^{\dagger}-\frac{1}{2}\left\{L_{k}^{\dagger} L_{k}, \rho\right\}\right)}_{\text {dissipator }} \equiv \mathcal{L} \rho . \tag{4}
\end{equation*}
$$

[^1]
Master Equations: Bottom-up (perturbative)

Schrodinger's Equation 1

Von Neumann
I Born-Markov, Tr_{B}
Redfield QME
\downarrow Secular
Lindblad QME

Lindblad is Secular Redfield

The bottom up derivation of Lindblad equation is Redfield (Born-Markov) + Rotating Wave (Secular) Approximation.
We will stop at Redfield to go beyond secular, but note that Redfield is notoriously non-CPTP.

Born-Markov Redfield: Primer

The full Hamiltonian takes the form

$$
\begin{equation*}
\hat{H}=\underbrace{\hat{H}_{S}+\hat{H}_{B}}_{\hat{H}_{0}}+\hat{V} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{H}_{B}=\sum_{j} \omega_{j} \hat{b}_{j}^{\dagger} \hat{b}_{j} \tag{6}
\end{equation*}
$$

The system-bath interaction Hamiltonian is bilinear

$$
\begin{equation*}
\hat{V}=\hat{S} \otimes \hat{B} ; \quad \hat{B}=\sum_{j} g_{j}\left(\hat{b}_{j}^{\dagger}+\hat{b}_{j}\right) \tag{7}
\end{equation*}
$$

g_{j} describes the system-bath coupling energy between mode j in the bath and the system.

Born-Markov Redfield: Derivation Sketch

- Starting from von Neumann equation in the interaction picture,

$$
\begin{equation*}
\dot{\rho}_{l}(t)=-i\left[\hat{V}_{l}, \rho_{l}(t)\right] \tag{8}
\end{equation*}
$$

Born-Markov Redfield: Derivation Sketch

- Starting from von Neumann equation in the interaction picture,

$$
\begin{equation*}
\dot{\rho}_{l}(t)=-i\left[\hat{V}_{l}, \rho_{l}(t)\right] \tag{8}
\end{equation*}
$$

- Make the Born approximation, i.e., $\rho \approx \rho_{S} \otimes \rho_{B}$ and " $\hat{V} \ll \hat{H}_{0}$ "

$$
\underbrace{\frac{\partial \rho_{l}}{\partial t}(t)=-i\left[\hat{V}_{l}(t), \rho_{l}\left(t_{0}\right)\right]-\int_{t_{0}}^{t} d \tau\left[\hat{V}_{l}(t),\left[\hat{V}_{l}(\tau), \rho_{l}(\tau)\right]\right]}
$$

Partial trace $\Rightarrow \frac{\partial \rho S, l}{\partial t}(t)=\underbrace{-i \operatorname{Tr}_{B}\left\{\left[\hat{V}_{l}(t), \rho_{l}\left(t_{0}\right)\right]\right\}}_{0 \text { for a harmonic bath }}-\operatorname{Tr}_{B}\left\{\int_{t_{0}}^{t} d \tau\left[\hat{V}_{l}(t),\left[\hat{V}_{l}(\tau), \rho_{l}(\tau)\right]\right]\right\}$

Born-Markov Redfield: Derivation Sketch

- Markov I (also stationary bath)

$$
\begin{equation*}
\frac{\partial \rho_{S, I}(t)}{\partial t}=-\operatorname{Tr}_{B}\left\{\int_{t_{0}}^{t} d \tau\left[\hat{V}_{l}(t),\left[\hat{V}_{l}(\tau), \rho_{S, I}(t) \otimes \rho_{B}\right]\right]\right\} \tag{10}
\end{equation*}
$$

Born-Markov Redfield: Derivation Sketch

- Markov I (also stationary bath)

$$
\begin{equation*}
\frac{\partial \rho_{S, I}(t)}{\partial t}=-\operatorname{Tr}_{B}\left\{\int_{t_{0}}^{t} d \tau\left[\hat{V}_{l}(t),\left[\hat{V}_{l}(\tau), \rho_{S, I}(t) \otimes \rho_{B}\right]\right]\right\} \tag{10}
\end{equation*}
$$

- Markov II:

$$
\begin{equation*}
\frac{\partial \rho_{S, I}(t)}{\partial t}=-\operatorname{Tr}_{B}\left\{\int_{0}^{\infty} d \tau\left[\hat{V}_{l}(t),\left[\hat{V}_{l}(t-\tau), \rho_{S, I}(t) \otimes \rho_{B}\right]\right]\right\} \tag{11}
\end{equation*}
$$

Markov: memoryless, "What happens next depends only on the state of affairs now.". For example, drunkard's walk is Markov but Bus waiting is not Markov.

Born-Markov Redfield: Derivation Sketch

Rotate back to the Schrödinger picture and do algebra.

$$
\begin{align*}
\frac{\partial \rho_{s}}{\partial t}= & -\frac{i}{\hbar}\left[\hat{H}_{s}, \rho_{s}\right]-\int_{0}^{\infty}\left\{\left[\hat{S}, e^{-i \hat{H}_{s} \tau} \hat{S}^{i \hat{H}_{s} \tau} \rho_{s}(t)\right]\left\langle\hat{B}_{l}(t-\tau) \hat{B}_{l}(t)\right\rangle\right. \\
& \left.-\left[\hat{S}^{\prime}, \rho_{s}(t) e^{-i \hat{H}_{s} \tau} \hat{S}^{i \hat{H}_{s} \tau}\right]\left\langle\hat{B}_{l}(t) \hat{B}_{l}(t-\tau)\right\rangle\right\} d \tau \tag{12}
\end{align*}
$$

we'll eventually need to Laplace transform the bath correlation function

$$
\begin{equation*}
\underbrace{R_{i j, k l}(\omega)}_{\text {for Redfield Liouvillian }}=S_{i j} S_{k l} \int_{0}^{\infty} d \tau e^{i \omega \tau} \underbrace{\left\langle\hat{B}_{l}(\tau) \hat{B}_{l}(0)\right\rangle}_{\left.\sum_{j} \lambda_{j}^{2} e^{i \omega_{j} t}\left\langle\hat{n}\left(\omega_{j}\right)\right\rangle+e^{-i \omega_{j} t}\left\langle\hat{n}\left(\omega_{j}\right)+1\right\rangle\right]} \tag{13}
\end{equation*}
$$

The Sokhotski-Plemelj theorem says

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{x \pm i \epsilon}=\mp i \pi \delta(x)+\mathcal{P}\left(\frac{1}{x}\right) \tag{14}
\end{equation*}
$$

Spectral Density

The real part of the Laplace transform $\Gamma(\omega)$ matters. (the imaginary part is a negligible Lamb shift). Notice that we'll find a delta term

$$
\begin{gather*}
\Gamma_{\alpha}(\omega)= \begin{cases}\pi J_{\alpha}(\omega) n_{\alpha}(|\omega|) & \omega<0 \\
\pi J_{\alpha}(\omega)\left[\left(n_{\alpha}(\omega)+1\right]\right. & \omega>0 \\
\pi C_{\alpha} & \omega=0\end{cases} \tag{15}\\
J(\omega)=\sum_{k} \lambda_{k}^{2} \delta\left(\omega-\omega_{k}\right) \tag{16}
\end{gather*}
$$

all we need to know about the environment is encoded in the spectral density $J(\omega)$.

Some remarks on Born-Markov Redfield QME

- Redfield QME is used all the time, especially for complex problems where microscopic details are important, e.g., in quantum thermodynamics, quantum biology, etc.
- Assumptions:
- Born (Weak coupling) \rightarrow second order in the system bath coupling parameter
- Markov (Memoryless)
- But, unlike Lindblad, there is no secular approximation

Secular approximation

Fails for systems with near-degenerate levels, such as those used for (1) adiabatic quantum computing, (2) coherent population trapping and electromagnetically induced transparency, where coherences are prominent ${ }^{3,4}$. This is because secular approximation decouples population and coherence dynamics.

[^2]
Question 2:

How to go beyond Born-Markov?

- Fully Numerical:
- Multiconfiguration time-dependent Hartree (MCTDH)
- Hierarchical equations of motion (HEOM) (Tanimura)
- Density matrix renormalization group (DMRG)
- Numerical path integral (Segal, Millis, and Reichman, 2010 PRB) \leftarrow in the journal club suggestion list
- Chain-mapping methods, particularly TEDOPA (Chin and Plenio)
- Tensor network methods (Cao, Huelga, Plenio)
- Quantum monte-carlo
i.e., solve cleverly the $S+B$ full dynamics.

Question 2:

- Inexact analytical:
- Non-interacting blip approximation (NIBA) (Segal)
- Polaron-transformation (Cao, Segal, Silbey, Cheng, etc)
- Green's function techniques
each is applicable in very particular circumstances.

Question 2:

- Inexact analytical:
- Non-interacting blip approximation (NIBA) (Segal)
- Polaron-transformation (Cao, Segal, Silbey, Cheng, etc)
- Green's function techniques
each is applicable in very particular circumstances.
- the reaction-coordinate quantum master equation method is in between: a semi-analytical method.

Reaction Coordinate Mapping: Primer (Chain Mapping)

Recall that the quantum system is coupled to many harmonic oscillators...

Reaction Coordinate
Iterative Chain
Mapping (for TEDOPA)

Reaction Coordinate Mapping: Primer (Chain Mapping)

Recall that the quantum system is coupled to many harmonic oscillators...

Reaction Coordinate

Iterative Chain Mapping (for TEDOPA)

- A couple words on TEDOPA... (a) numerically exact mapping through orthogonal polynomials, (b) infinitely long chain \rightarrow truncated chain (bounded by Lieb-Robinson technique) + truncated harmonic manifold, (c) evolved with DMRG or TEBD, essentially evolving the whole chain, must Trotterize.

Reaction Coordinate Mapping: Details

$$
\begin{align*}
& \hat{H}= \hat{H}_{s}+\sum_{k} \nu_{k}\left(\hat{c}_{k}^{\dagger}+\hat{S} \frac{f_{k}}{\nu_{k}}\right)\left(\hat{c}_{k}+\hat{S} \frac{f_{k}}{\nu_{k}}\right) \tag{17}\\
& \downarrow \\
& \hat{H}= \hat{H}_{s}+\Omega\left(\hat{a}^{\dagger}+\frac{\lambda}{\Omega} \hat{S}\right)\left(\hat{a}+\frac{\lambda}{\Omega} \hat{S}\right) \\
&+\sum_{k} \omega_{k}\left(\hat{b}_{k}^{\dagger}+\left(\hat{a}+\hat{a}^{\dagger}\right) \frac{f_{k}}{\omega_{k}}\right)\left(\hat{b}_{k}+\left(\hat{a}+\hat{a}^{\dagger}\right) \frac{f_{k}}{\omega_{k}}\right) \tag{18}
\end{align*}
$$

where $\lambda\left(\hat{a}^{\dagger}+\hat{a}\right)=\sum_{k} f_{k}\left(\hat{c}^{\dagger}+\hat{c}\right)$. Note that

- The system Hamiltonian (Red) expands
- The coupling is redrawn, from initial system \rightarrow bath to extracted mode \rightarrow residual bath

Reaction Coordinate Mapping: Details

Also, $J(\omega) \rightarrow J_{R C}(\omega)$ (quite technical, see ${ }^{5}$). A fair simplification is from a Brownian (peaked) J about $\Omega(\mathrm{b}) \rightarrow$ an Ohmic (linear) $J_{R C}(\mathrm{a})$

[^3]
Some remarks on the RCQME

- After the mapping, we perform BMR-QME, as the residual system-bath coupling parameter is small.
- A truncation is performed on the reaction mode, so that the extended system Hamiltonian is finite.
- Hence, RCQME is not intended for high-temperature dynamics.
- The extended Hamiltonian scales as $\left(\#_{\text {system levels }}\right)(\# \text { extracted manifold })^{\# \text { extracted bath }}$. Numerical complexity \propto power 4th of extended Hamiltonian dimension to construct Redfield tensor.
- A partial trace over the reaction modes is then taken to revert back to the (original) system basis.
- Can use existing toolbox developed for BMR-QME or Lindblad QME.

Applications of the RCQME (from the Segal group)

- Mostly numerical:
- Non-equilibrium spin-boson at strong coupling ${ }^{6}$
- Quantum absorption refrigerator at strong coupling ${ }^{7}$
- Markovian dynamics ${ }^{8}$
- Analytical:
- Transport beyond second order ${ }^{9}$
- Generalized effective hamiltonian theory ${ }^{10}$

[^4]
Non-equilibrium spin-boson at strong coupling ${ }^{11}$

$\begin{aligned} & \text { We'd like to know } j_{q, i}= \operatorname{Tr}\left\{D_{i}\left(\rho_{E S}\right) \hat{H}_{E S}\right\} \text { (i.e., how conductive the qubit } \\ & \text { is) at steady state }\end{aligned}$
${ }^{11}$ Nicholas Anto-Sztrikacs and Dvira Segal, 2021 NJP

Non-equilibrium spin-boson at strong coupling ${ }^{12}$

- RC-QME captures a signature of strong-coupling transport, turnover.
- RC-QME agrees with numerically intensive methods, PT-NEGF.

[^5]
Signature of strong coupling: energy renormalization

Energy renormalization causes turnover behaviour. At low temperature...

- Squeeze slightly \Rightarrow low cost to excite effective qubit \Rightarrow higher current
- Squeeze too much \Rightarrow each photon carries little energy \Rightarrow lower current

Figure 2. (a) Eigenenergies of $H_{\mathrm{ES}}^{M=2}$ with $\Delta=1, \varepsilon=0, \Omega=28 \Delta$ [65]. (b) Focus on the lowest two eigenvalues, which form an effective spin Hamiltonian.

Quantum Absorption Refrigerator at strong coupling ${ }^{13}$

an Absorption Refrigerator takes in heat from T_{c} and dumps it to T_{h} using work from $T_{w}\left(T_{w}>T_{h}>T_{c}\right)$.

[^6]
Quantum Absorption Refrigerator at strong coupling ${ }^{14}$

This refrigerator is therefore quantummable.

${ }^{14} \mathrm{FI}^{*}$, NAS*, and DS, 2022 PRE

Quantum Absorption Refrigerator at strong coupling ${ }^{15}$

In the tight-coupling limit (i.e., one quanta in one quanta out) one can prove

$$
\begin{equation*}
\frac{\epsilon_{2}-\epsilon_{1}}{\epsilon_{3}-\epsilon_{1}} \leq \frac{\beta_{h}-\beta_{w}}{\beta_{c}-\beta_{w}} \Leftrightarrow \text { cooling } \tag{19}
\end{equation*}
$$

also, from BMR-QME, higher λ leads to better cooling.

Quantum Absorption Refrigerator at strong coupling ${ }^{16}$

With strong coupling,

- Reshaping of cooling region, \mathcal{R}_{3} (Renormalization)
- Emergence of new transport pathways, \mathcal{R}_{2} (Bath-bath pathway)
${ }^{16} \mathrm{FI}^{*}$, NAS*, and DS, 2022 PRE

Quantum Absorption Refrigerator at strong coupling ${ }^{17}$

And therefore we'll never hit Carnot's efficiency,

${ }^{17} \mathrm{FI}^{*}$, NAS*, and DS, 2022 PRE

Quantum transport beyond second order

Recall in the derivation of BMR-QME, we cut the Dyson series to second order. Some nontrivial effects can arise even at weak coupling, if we had kept on going.
One example is the $\sigma_{x}-\sigma_{z}$ type transport reported in Ref. ${ }^{18}$

Quantum transport beyond second order

Consider the generalized non-equilibrium spin-boson (NESB) model,

$$
\begin{align*}
\hat{H}_{S B}= & \frac{\Delta}{2} \hat{\sigma}_{z}+\hat{\sigma}_{x} \sum_{k} f_{k, L}\left(\hat{c}_{k, L}^{\dagger}+\hat{c}_{k, L}\right) \\
& +\underbrace{\hat{\sigma}_{\theta}}_{\hat{\sigma}_{z} \cos (\theta)+\hat{\sigma}_{x} \sin (\theta)} \sum_{k} f_{k, R}\left(\hat{c}_{k, R}^{\dagger}+\hat{c}_{k, R}\right) \\
& +\sum_{k, \alpha \in\{R, L\}} \nu_{k, \alpha} \hat{c}_{k, \alpha}^{\dagger} \hat{c}_{k, \alpha} . \tag{20}
\end{align*}
$$

Quantum transport beyond second order

It could be shown that the heat current at steady state takes

$$
\begin{align*}
j_{q} & \equiv-\left\langle\dot{\hat{H}}_{B, L}\right\rangle=-i\left\langle\left[\hat{H}, \hat{H}_{B, L}\right]\right\rangle \\
& =-i \lambda_{L}^{2}\left\langle\left[\hat{H}_{S}, \hat{V}_{L}\right]\right\rangle-i \lambda_{L}^{2} \lambda_{R}^{2}\left\langle\left[\hat{V}_{R}, \hat{V}_{L}\right]\right\rangle \tag{21}
\end{align*}
$$

the first term is captured by second-order BMR-QME, but the second term is not. The latter is an interbath transport pathway, which also appeared as leakage for QAR at strong coupling.

Quantum transport beyond second order

Numerically intensive HEOM and NE-PTRE captures $j_{q} \propto \lambda^{4}$ current ${ }^{19}$, but RC-QME captures them just as well ${ }^{20}$.

${ }^{19}$ Jianshu Cao et al., JCP 2020
${ }^{20}$ NAS, FI, and DS, JCP 2022

Hints of analyticity with the RC-QME

The Polaron transform (the PT in NE-PTRE) is used to treat strong-coupling effects in very particular cases, modifying \hat{V} in return for dressing \hat{H}_{s}. Performing PT post reaction-coordinate mapping reveals interesting analytical results.

PT-RCQME

The RC-mapped Hamiltonian for Eq. (20) is

$$
\begin{align*}
\hat{H}_{S B-R C} & =\frac{\Delta}{2} \hat{\sigma}_{z}+\Omega_{L} \hat{a}_{L}^{\dagger} \hat{a}_{L}+\Omega_{R} \hat{a}_{R}^{\dagger} \hat{a}_{R}+\lambda_{L} \hat{\sigma}_{x}\left(\hat{a}_{L}^{\dagger}+\hat{a}_{L}\right) \\
& +\lambda_{R} \hat{\sigma}_{\theta}\left(\hat{a}_{R}^{\dagger}+\hat{a}_{R}\right)+\sum_{k, \alpha} \frac{g_{k, \alpha}^{2}}{\omega_{k, \alpha}}\left(\hat{a}_{\alpha}^{\dagger}+\hat{a}_{\alpha}\right)^{2} \\
& +\sum_{\alpha}\left(\hat{a}_{\alpha}^{\dagger}+\hat{a}_{\alpha}\right) \sum_{k} g_{k, \alpha}\left(\hat{b}_{k, \alpha}^{\dagger}+\hat{b}_{k, \alpha}\right)+\sum_{k, \alpha} \omega_{k, \alpha} \hat{b}_{k, \alpha}^{\dagger} \hat{b}_{k, \alpha} . \tag{22}
\end{align*}
$$

PT-RCQME

Transform that Hamiltonian, $\hat{\tilde{H}}_{S B-R C}=\hat{U}_{P} \hat{H}_{S B-R C} \hat{U}_{P}^{\dagger}$, to the left reservoir with $\hat{U}_{P}^{L}=e^{\frac{\lambda_{L}}{\Omega_{L}} \hat{\sigma}_{x}\left(\hat{a}_{L}^{\dagger}-\hat{a}_{L}\right)}$. This results to At low temperatures, $\Delta \rightarrow \Delta e^{-\frac{\lambda^{2}}{2 \Omega^{2}}}$

$$
\begin{aligned}
\hat{\tilde{H}}_{S B-R C} & =\frac{\Delta}{4}\left[\left(\hat{\sigma}_{z}-i \hat{\sigma}_{y}\right) e^{\frac{\lambda_{L}}{\Omega_{L}}\left(\hat{a}_{L}^{\dagger}-\hat{a}_{L}\right)}+\left(\hat{\sigma} z+i \hat{\sigma}_{y}\right) e^{-\frac{\lambda_{L}}{\Omega_{L}}\left(\hat{a}_{L}^{\dagger}-\hat{a}_{L}\right)}\right]+\Omega_{R} \hat{a}_{R}^{\dagger} \hat{a}_{R}+\Omega_{L} \hat{a}_{L}^{\dagger} \hat{a}_{L} \\
& +\lambda_{R} \sin \boldsymbol{\theta}\left(\hat{a}_{R}^{\dagger}+\hat{a}_{R}\right) \hat{\sigma}_{x}+\lambda_{R} \cos \boldsymbol{\theta}\left(\hat{a}_{R}^{\dagger}+\hat{a}_{R}\right) \frac{1}{2}\left[\left(\hat{\sigma}_{z}-i \hat{\sigma}_{y}\right) e^{\frac{\lambda_{L}}{\Omega_{L}}\left(\hat{a}_{L}^{\dagger}-\hat{a}_{L}\right)}+\left(\hat{\sigma}_{z}+i \hat{\sigma}_{y}\right) e^{-\frac{\lambda_{L}}{\Omega_{L}}\left(\hat{a}_{L}^{\dagger}-\hat{a}_{L}\right)}\right] \\
& -\frac{2 \lambda_{L}}{\Omega_{L}} \hat{\sigma}_{x} \sum_{k} g_{k, L}\left(\hat{b}_{k, L}^{\dagger}+\hat{b}_{k, L}\right)+\left(\hat{a}_{L}^{\dagger}+\hat{a}_{L}-\frac{2 \lambda_{L}}{\Omega_{L}} \hat{\sigma}_{x}\right)^{2} \sum_{k} \frac{g_{k, L}^{2}}{\omega_{k, L}}+\left(\hat{a}_{R}^{\dagger}+\hat{a}_{R}\right)^{2} \sum_{k} \frac{g_{k, R}^{2}}{\omega_{k, R}} \\
& +\sum_{\alpha}\left(\hat{a}_{\alpha}^{\dagger}+\hat{a}_{\alpha}\right) \sum_{k} g_{k, \alpha}\left(\hat{b}_{k, \alpha}^{\dagger}+\hat{b}_{k, \alpha}\right)+\sum_{k, \alpha} \omega_{k, \alpha} \hat{b}_{k, \alpha}^{\dagger} \hat{b}_{k, \alpha}
\end{aligned}
$$

PT-RCQME

Set $\theta=\pi / 2$ and perform an additional polaron transform on the right reservoir. At low temperatures and to lowest order in λ,

$$
\begin{aligned}
& \hat{H}_{S B-R C}^{\sigma_{x}-\sigma_{x}}=\frac{\Delta}{2} \hat{\sigma}_{z}-\frac{\Delta}{2} i \hat{\sigma}_{y} \sum_{\alpha} \frac{\lambda_{\alpha}}{\Omega_{\alpha}}\left(\hat{a}_{\alpha}^{\dagger}-\hat{a}_{\alpha}\right)+\Omega_{R} \hat{a}_{R}^{\dagger} \hat{a}_{R}+\Omega_{L} \hat{a}_{L}^{\dagger} \hat{a}_{L} \\
& +\sum_{\alpha}\left(\hat{a}_{\alpha}^{\dagger}+\hat{a}_{\alpha}\right)\left[\hat{\sigma}_{x}\left(\frac{-2 \lambda_{\alpha}}{\Omega_{\alpha}}\right) \sum_{k} \frac{g_{k, \alpha}^{2}}{\omega_{k, \alpha}}+\sum_{k} g_{k, \alpha}\left(\hat{b}_{k, \alpha}^{\dagger}+\hat{b}_{k, \alpha}\right)\right] \\
& -\sum_{\alpha}^{2 \lambda_{\alpha}} \frac{\hat{\sigma}_{\alpha}}{\Omega_{\alpha}} \sum_{k} g_{k, \alpha}\left(\hat{b}_{k, \alpha}^{\dagger}+\hat{b}_{k}\right)+\sum_{k, \alpha} \omega_{k, \alpha} \hat{b}_{k, \alpha}^{\dagger} \hat{b}_{k, \alpha} \\
& +\sum_{\alpha}\left(\hat{a}_{\alpha}^{\dagger}+\hat{a}_{\alpha}\right)^{2} \sum_{k} \frac{g_{k, \alpha}^{2}}{\omega_{k, \alpha}} .
\end{aligned}
$$

One bath excites $\mathrm{RC} \rightarrow \mathrm{RC}$ excites system via $\sigma_{x} \rightarrow$ the other bath.

PT-RCQME

Set $\theta=0$,

$$
\begin{aligned}
& \hat{H}_{S B-R C}^{\sigma_{x}-\sigma_{z}}=\frac{\Delta}{2} \hat{\sigma}_{z}-\frac{i \lambda_{L} \Delta}{2 \Omega_{L}} \hat{\sigma}_{y}\left(\hat{a}_{L}^{\dagger}-\hat{a}_{L}\right)+\sum_{k, \alpha} \omega_{k, \alpha} \hat{b}_{k, \alpha}^{\dagger} \hat{b}_{k, \alpha} \\
& +\Omega_{R} \hat{a}_{R}^{\dagger} \hat{a}_{R}+\Omega_{L} \hat{a}_{L}^{\dagger} \hat{a}_{L}+\lambda_{R} \hat{\sigma}_{z}\left(\hat{a}_{R}^{\dagger}+\hat{a}_{R}\right) \\
& -i \frac{\lambda_{R} \lambda_{L}}{\Omega_{L}}\left(\hat{a}_{R}^{\dagger}+\hat{a}_{R}\right) \hat{\sigma}_{y}\left(\hat{a}_{L}^{\dagger}-\hat{a}_{L}\right) \\
& -\frac{2 \lambda_{L}}{\Omega_{L}} \hat{\sigma}_{x} \sum_{k} g_{k, L}\left(\hat{b}_{k, L}^{\dagger}+\hat{b}_{k, L}\right)+\left(\hat{a}_{L}^{\dagger}+\hat{a}_{L}-\frac{2 \lambda_{L}}{\Omega_{L}} \hat{\sigma}_{x}\right)^{2} \sum_{k} \frac{g_{k, L}^{2}}{\omega_{k, L}} \\
& +\left(\hat{a}_{R}^{\dagger}+\hat{a}_{R}\right)^{2} \sum_{k} \frac{g_{k, R}^{2}}{\omega_{k, R}}+\sum_{\alpha}\left(\hat{a}_{\alpha}^{\dagger}+\hat{a}_{\alpha}\right) \sum_{k} g_{k, \alpha}\left(\hat{b}_{k, \alpha}^{\dagger}+\hat{b}_{k, \alpha}\right)
\end{aligned}
$$

Emergence of an unusual bath-bath transport pathway which scales differently as the bath-system-bath pathway.

Effective Hamiltonian Theory at strong coupling

PT-RCQME was generalized by NAS, where strong coupling effects can be encoded at the Hamiltonian level simple enough to do analytical work ${ }^{21}$

$$
\hat{H}_{s}^{\mathrm{eff}}(\lambda)=\langle 0| e^{(\lambda / \Omega)\left(\hat{a}^{\dagger}-\hat{a}\right) \hat{S}} \hat{H}_{s} e^{-(\lambda / \Omega)\left(\hat{a}^{\dagger}-\hat{a}\right) \hat{S}}|0\rangle
$$

(d)

(b)

(e)

$$
\left.T_{L}\right) \stackrel{\hat{\sigma}_{x}}{\rightleftarrows} \stackrel{J}{\Delta_{L}} \stackrel{\hat{\sigma}_{x}}{\frac{1}{\Delta_{R}}} \rightleftarrows T_{R}
$$

(c)

Markovian dynamics with RC-QME ${ }^{22}$

Conclusion

Reaction-coordinate master equation is an semi-analytical method to study quantum dynamics beyond Born-Markov. Signatures of strong coupling can explain complex models, for example quantum absorption refrigerators.

Acknowledgements

- Dvira Segal
- Nicholas Anto-Sztrikacs

[^0]: ${ }^{2}$ Breuer and Petruccione or Lidar are good references

[^1]: ${ }^{2}$ Breuer and Petruccione or Lidar are good references

[^2]: ${ }^{3}$ FI, Nicholas Anto-Sztrikacs, and Dvira Segal, NJP 2022
 ${ }^{4}$ FI, Nicholas Anto-Sztrikacs, and Dvira Segal, arxiv:2301.06135, 2023

[^3]: ${ }^{5}$ Nicholas Anto-Sztrikacs and Dvira Segal, 2021 NJP

[^4]: ${ }^{6}$ Nicholas Anto-Sztrikacs and Dvira Segal, 2021 NJP ${ }^{7}{ }^{7} I^{*}$, NAS*, and DS, 2022 PRE
 ${ }^{8}$ NAS and DS, 2021 PRA
 ${ }^{9}$ NAS, FI, and DS, 2022 JCP
 ${ }^{10}$ NAS, Ahsan Nazir, and DS, 2023 PRX Quantum

[^5]: ${ }^{12}$ Nicholas Anto-Sztrikacs and Dvira Segal, 2021 NJP

[^6]: ${ }^{13} \mathrm{FI}^{*}$, NAS^{*}, and DS, 2022 PRE

