Reaction Coordinate Master Equation for Transport Problems Beyond Born-Markov

Felix Ivander

May 16, 2023

Felix Ivander

Reaction Coordinate Master Equation for Tra

May 16, 2023

Outline

Primer on Open Quantum System

Master Equations

- Lindblad Equation
- Bloch-Redfield Equation
 - Aside: secular approximation

Reaction Coordinate Master Equation

- Non-equilibrium spin-boson
- Quantum Absorption Refrigerator
- Quantum transport beyond second order
- Effective Hamiltonian Theory at strong coupling
- Markovian dynamics

Outlook

< 4[™] >

< ∃⇒

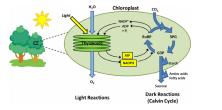
æ

How would a **quantum** system evolve in contact with a thermal environment? \leftarrow Why is this interesting?

< 1 k

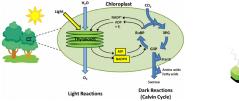
∃ →

Quantum systems in contact with a thermal bath (in nature)



Photosynthesis is at room temperature

Quantum systems in contact with a thermal bath (in nature)



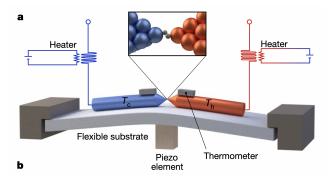
- Photosynthesis is at room temperature
- Quantum effects in photosynthesis

Quantum biology...

Reaction Coordinate Master Equation for Tra

< □ > < □ > < □ > < □ > < □ > < □ >

Quantum systems in contact with a thermal bath (...in the lab)



- Atomic junction experiments¹
- Quantum system as a conductor

¹Ofir Shein Lumbroso, Lena Simine, Abraham Nitzan, Dvira Segal, and Oren Tal, Nature 2018

• Quantization? Feynman: thermal environment → infinitely many harmonic oscillators.

- Quantization? Feynman: thermal environment → infinitely many harmonic oscillators.
- Dynamics? Schrödinger's equation $i\hbar\partial_t |\psi(t)\rangle = \hat{H}|\psi(t)\rangle$.

But...

- Quantization? Feynman: thermal environment → infinitely many harmonic oscillators.
- Dynamics? Schrödinger's equation $i\hbar\partial_t |\psi(t)\rangle = \hat{H}|\psi(t)\rangle$.
- But... Dirac:
 - ...laws necessary for the ...large part of physics and the whole of chemistry are thus completely known,

- Quantization? Feynman: thermal environment → infinitely many harmonic oscillators.
- Dynamics? Schrödinger's equation $i\hbar\partial_t |\psi(t)\rangle = \hat{H}|\psi(t)\rangle$.

But... Dirac:

- ...laws necessary for the ...large part of physics and the whole of chemistry are thus completely known,
- ... the difficulty is only that the **exact** application of these laws leads to equations much too complicated to be soluble...

i.e., $|\psi_{S+E}(t)\rangle$ is huge **but** we do not care about the environment part. One solution is to use a dissipative master equation.

Lindblad equation: Top-Down (short time expansion of the Kraus operator)

The reduced system density matrix satisfies

$$\langle i|
ho|i
angle \ge 0$$
 (1)
Tr{ $ho\} = 1$ (2)

Therefore, we'd like to find a quantum map that preserves these properties,

$$\rho \to \rho', \text{ via } \dot{\rho} = \mathcal{L}\rho$$
(3)

Lindblad equation: Top-Down (short time expansion of the Kraus operator)

The reduced system density matrix satisfies

$$\langle i|
ho|i
angle \ge 0$$
 (1)
 $\operatorname{Tr}\{
ho\} = 1$ (2)

Therefore, we'd like to find a quantum map that preserves these properties,

$$ho o
ho', \ \ via \ \ \dot{
ho} = \mathcal{L}
ho$$
 (3)

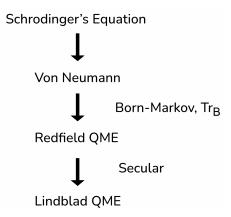
which Lindblad proved to take the general GKLS form²

$$\dot{\rho} = \underbrace{-i[\hat{H},\rho]}_{\text{unitary}} + \underbrace{\sum_{k} \Gamma_{k} \left(L_{k} \rho L_{k}^{\dagger} - \frac{1}{2} \left\{ L_{k}^{\dagger} L_{k}, \rho \right\} \right)}_{\text{dissipator}} \equiv \mathcal{L}\rho. \tag{4}$$

²Breuer and Petruccione or Lidar are good references $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Reaction Coordinate Master Equation for Tra

Master Equations: Bottom-up (perturbative)



The bottom up derivation of Lindblad equation is Redfield (Born-Markov) + Rotating Wave (Secular) Approximation.

We will stop at Redfield to go beyond secular, but note that Redfield is notoriously non-CPTP.

Born-Markov Redfield: Primer

The full Hamiltonian takes the form

$$\hat{H} = \underbrace{\hat{H}_S + \hat{H}_B}_{\hat{H}_0} + \hat{V}, \tag{5}$$

with

$$\hat{H}_B = \sum_j \omega_j \hat{b}_j^{\dagger} \hat{b}_j.$$
(6)

The system-bath interaction Hamiltonian is bilinear

$$\hat{V} = \hat{S} \otimes \hat{B}; \quad \hat{B} = \sum_{j} g_{j} (\hat{b}_{j}^{\dagger} + \hat{b}_{j}).$$
 (7)

 g_j describes the system-bath coupling energy between mode j in the bath and the system.

Felix Ivander

May 16, 2023

• Starting from von Neumann equation in the interaction picture,

$$\dot{\rho}_I(t) = -i[\hat{V}_I, \rho_I(t)] \tag{8}$$

• Starting from von Neumann equation in the interaction picture,

$$\dot{\rho}_I(t) = -i[\hat{V}_I, \rho_I(t)] \tag{8}$$

• Make the **Born** approximation, i.e., $\rho \approx \rho_S \otimes \rho_B$ and " $\hat{V} \ll \hat{H}_0$ "

$$\underbrace{\frac{\partial \rho_{I}}{\partial t}(t) = -i[\hat{V}_{I}(t), \rho_{I}(t_{0})] - \int_{t_{0}}^{t} d\tau [\hat{V}_{I}(t), [\hat{V}_{I}(\tau), \rho_{I}(\tau)]]}_{Partial \ trace \Rightarrow \frac{\partial \rho_{S,I}}{\partial t}(t) = \underbrace{-i \ \mathrm{Tr}_{B}\{[\hat{V}_{I}(t), \rho_{I}(t_{0})]\}}_{0 \ \text{for a harmonic bath}} - \mathrm{Tr}_{B}\{\int_{t_{0}}^{t} d\tau [\hat{V}_{I}(t), [\hat{V}_{I}(\tau), \rho_{I}(\tau)]]\}}$$

Born-Markov Redfield: Derivation Sketch

• Markov I (also stationary bath)

$$\frac{\partial \rho_{S,I}(t)}{\partial t} = -\operatorname{Tr}_{B}\{\int_{t_{0}}^{t} d\tau [\hat{V}_{I}(t), [\hat{V}_{I}(\tau), \rho_{S,I}(t) \otimes \rho_{B}]]\}, \quad (10)$$

3 N 3

• Markov I (also stationary bath)

$$\frac{\partial \rho_{S,I}(t)}{\partial t} = -\operatorname{Tr}_B\{\int_{t_0}^t d\tau [\hat{V}_I(t), [\hat{V}_I(\tau), \rho_{S,I}(t) \otimes \rho_B]]\}, \quad (10)$$

• Markov II:

$$\frac{\partial \rho_{S,I}(t)}{\partial t} = -\operatorname{Tr}_B\{\int_0^\infty d\tau [\hat{V}_I(t), [\hat{V}_I(t-\tau), \rho_{S,I}(t) \otimes \rho_B]]\}.$$
(11)

Markov: memoryless, "What happens next depends only on the state of affairs now.". For example, drunkard's walk **is** Markov but Bus waiting is **not** Markov.

Born-Markov Redfield: Derivation Sketch

Rotate back to the Schrödinger picture and do algebra.

$$\frac{\partial \rho_{s}}{\partial t} = -\frac{i}{\hbar} [\hat{H}_{s}, \rho_{s}] - \int_{0}^{\infty} \left\{ [\hat{S}, e^{-i\hat{H}_{s}\tau} \hat{S} e^{i\hat{H}_{s}\tau} \rho_{s}(t)] \langle \hat{B}_{I}(t-\tau) \hat{B}_{I}(t) \rangle - [\hat{S}, \rho_{s}(t) e^{-i\hat{H}_{s}\tau} \hat{S} e^{i\hat{H}_{s}\tau}] \langle \hat{B}_{I}(t) \hat{B}_{I}(t-\tau) \rangle \right\} d\tau$$
(12)

we'll eventually need to Laplace transform the bath correlation function

$$\underbrace{R_{ij,kl}(\omega)}_{\text{for Redfield Liouvillian}} = S_{ij}S_{kl}\int_{0}^{\infty} d\tau e^{i\omega\tau} \underbrace{\langle \hat{B}_{l}(\tau)\hat{B}_{l}(0)\rangle}_{\sum_{j}\lambda_{j}^{2}[e^{i\omega_{j}t}\langle \hat{n}(\omega_{j})\rangle + e^{-i\omega_{j}t}\langle \hat{n}(\omega_{j}) + 1\rangle]}$$
(13)

The Sokhotski-Plemelj theorem says

$$\lim_{\epsilon \to 0^+} \frac{1}{x \pm i\epsilon} = \mp i\pi\delta(x) + \mathcal{P}(\frac{1}{x}), \tag{14}$$

The real part of the Laplace transform $\Gamma(\omega)$ matters. (the imaginary part is a negligible Lamb shift). Notice that we'll find a delta term

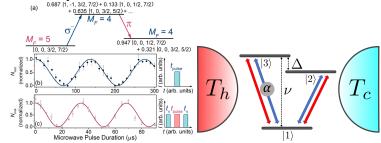
$$\Gamma_{\alpha}(\omega) = \begin{cases} \pi J_{\alpha}(\omega) n_{\alpha}(|\omega|) & \omega < 0, \\ \pi J_{\alpha}(\omega) [(n_{\alpha}(\omega) + 1] & \omega > 0, \\ \pi C_{\alpha} & \omega = 0, \end{cases}$$
(15)

$$J(\omega) = \sum_{k} \lambda_{k}^{2} \delta(\omega - \omega_{k}), \qquad (16)$$

all we need to know about the environment is encoded in the spectral density $J(\omega)$.

- Redfield QME is used all the time, especially for complex problems where microscopic details are important, e.g., in quantum thermodynamics, quantum biology, etc.
- Assumptions:
 - $\bullet\,$ Born (Weak coupling) $\rightarrow\,$ second order in the system bath coupling parameter
 - Markov (Memoryless)
- But, unlike Lindblad, there is no secular approximation

Fails for systems with near-degenerate levels, such as those used for (1) adiabatic quantum computing, (2) coherent population trapping and electromagnetically induced transparency, where coherences are prominent^{3,4}. This is because secular approximation decouples population and coherence dynamics.



³FI, Nicholas Anto-Sztrikacs, and Dvira Segal, NJP 2022
 ⁴FI, Nicholas Anto-Sztrikacs, and Dvira Segal, arxiv:2301.06135, 2023

Felix Ivander

Reaction Coordinate Master Equation for Tra

May 16, 2023

How to go beyond Born-Markov?

- Fully Numerical:
 - Multiconfiguration time-dependent Hartree (MCTDH)
 - Hierarchical equations of motion (HEOM) (Tanimura)
 - Density matrix renormalization group (DMRG)
 - Numerical path integral (Segal, Millis, and Reichman, 2010 PRB) \leftarrow in the journal club suggestion list
 - Chain-mapping methods, particularly TEDOPA (Chin and Plenio)
 - Tensor network methods (Cao, Huelga, Plenio)
 - Quantum monte-carlo
 - i.e., solve cleverly the S + B full dynamics.

- Inexact analytical:
 - Non-interacting blip approximation (NIBA) (Segal)
 - Polaron-transformation (Cao, Segal, Silbey, Cheng, etc)
 - Green's function techniques

each is applicable in very particular circumstances.

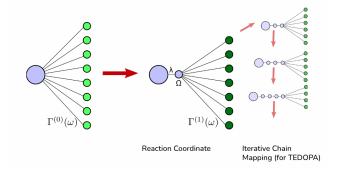
- Inexact analytical:
 - Non-interacting blip approximation (NIBA) (Segal)
 - Polaron-transformation (Cao, Segal, Silbey, Cheng, etc)
 - Green's function techniques

each is applicable in very particular circumstances.

• the reaction-coordinate quantum master equation method is in between: a *semi*-analytical method.

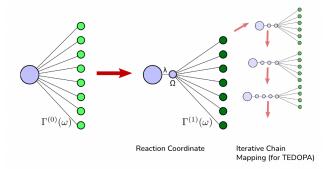
Reaction Coordinate Mapping: Primer (Chain Mapping)

Recall that the quantum system is coupled to many harmonic oscillators...



Reaction Coordinate Mapping: Primer (Chain Mapping)

Recall that the quantum system is coupled to many harmonic oscillators...



 A couple words on TEDOPA... (a) numerically exact mapping through orthogonal polynomials, (b) infinitely long chain → truncated chain (bounded by Lieb-Robinson technique) + truncated harmonic manifold, (c) evolved with DMRG or TEBD, essentially evolving the whole chain, must Trotterize.

May 16, 2023

Reaction Coordinate Mapping: Details

where $\lambda(\hat{a}^{\dagger}+\hat{a})=\sum_k f_k(\hat{c}^{\dagger}+\hat{c}).$ Note that

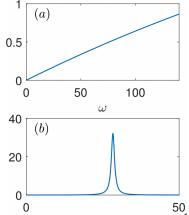
- The system Hamiltonian (Red) expands

Felix Ivander

May 16, 2023

Reaction Coordinate Mapping: Details

Also, $J(\omega) \rightarrow J_{RC}(\omega)$ (quite technical, see⁵). A fair simplification is from a Brownian (peaked) J about Ω (b) \rightarrow an Ohmic (linear) J_{RC} (a)



⁵Nicholas Anto-Sztrikacs and Dvira Segal, 2021 NJP

Felix Ivander

Reaction Coordinate Master Equation for Tra

- After the mapping, we perform BMR-QME, as the residual system-bath coupling parameter is small.
- A truncation is performed on the reaction mode, so that the extended system Hamiltonian is finite.
 - Hence, RCQME is not intended for high-temperature dynamics.
 - The extended Hamiltonian scales as $(\#_{\text{system levels}})(\#_{\text{extracted manifold}})^{\#_{\text{extracted bath}}}$. Numerical complexity \propto power 4th of extended Hamiltonian dimension to construct Redfield tensor.
- A partial trace over the reaction modes is then taken to revert back to the (original) system basis.
- Can use existing toolbox developed for BMR-QME or Lindblad QME.

Applications of the RCQME (from the Segal group)

- Mostly numerical:
 - Non-equilibrium spin-boson at strong coupling⁶
 - Quantum absorption refrigerator at strong coupling⁷
 - Markovian dynamics⁸
- Analytical:
 - Transport beyond second order⁹
 - Generalized effective hamiltonian theory¹⁰

⁶Nicholas Anto-Sztrikacs and Dvira Segal, 2021 NJP

⁷FI*, NAS*, and DS, 2022 PRE

⁸NAS and DS, 2021 PRA

⁹NAS, FI, and DS, 2022 JCP

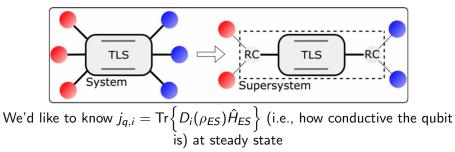
¹⁰NAS, Ahsan Nazir, and DS, 2023 PRX Quantum

Felix Ivander

Reaction Coordinate Master Equation for Tra

May 16, 2023

Non-equilibrium spin-boson at strong coupling¹¹

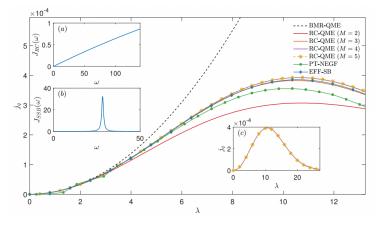


 11 Nicholas Anto-Sztrikacs and Dvira Segal, 2021 NJP $\$ $\$ e_) $\$ e_

Felix Ivander

Reaction Coordinate Master Equation for Tra

Non-equilibrium spin-boson at strong coupling¹²



- RC-QME captures a signature of strong-coupling transport, turnover.
- RC-QME agrees with numerically intensive methods, PT-NEGF.

¹²Nicholas Anto-Sztrikacs and Dvira Segal, 2021 NJP

Energy renormalization causes turnover behaviour. At low temperature...

- Squeeze slightly \Rightarrow low cost to excite effective qubit \Rightarrow higher current
- Squeeze too much \Rightarrow each photon carries little energy \Rightarrow lower current

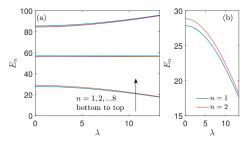
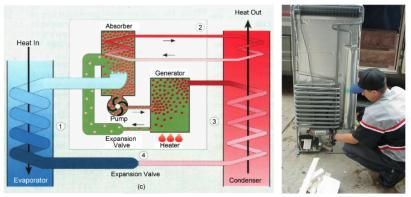


Figure 2. (a) Eigenenergies of $H_{\text{ES}}^{M=2}$ with $\Delta = 1$, $\varepsilon = 0$, $\Omega = 28\Delta$ [65]. (b) Focus on the lowest two eigenvalues, which form an effective spin Hamiltonian.

Quantum Absorption Refrigerator at strong coupling¹³

an Absorption Refrigerator takes in heat from T_c and dumps it to T_h using work from T_w ($T_w > T_h > T_c$).



¹³FI*, NAS*, and DS, 2022 PRE

Felix Ivander

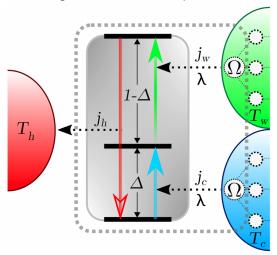
Reaction Coordinate Master Equation for Tra

May 16, 2023

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Quantum Absorption Refrigerator at strong coupling¹⁴

This refrigerator is therefore quantummable.



¹⁴FI*, NAS*, and DS, 2022 PRE

Felix Ivander

In the tight-coupling limit (i.e., one quanta in one quanta out) one can prove

$$\frac{\epsilon_2 - \epsilon_1}{\epsilon_3 - \epsilon_1} \le \frac{\beta_h - \beta_w}{\beta_c - \beta_w} \Leftrightarrow \text{cooling}$$
(19)

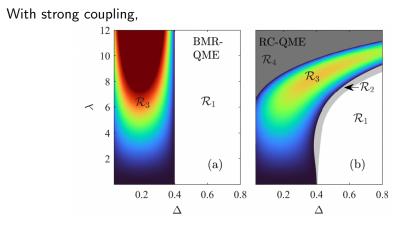
also, from BMR-QME, higher λ leads to better cooling.

¹⁵FI*, NAS*, and DS, 2022 PRE

Felix Ivander

Reaction Coordinate Master Equation for Tra

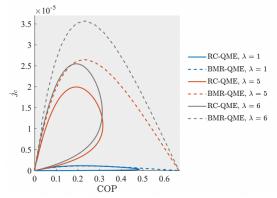
Quantum Absorption Refrigerator at strong coupling¹⁶



- Reshaping of cooling region, \mathcal{R}_3 (Renormalization)
- Emergence of new transport pathways , \mathcal{R}_2 (Bath-bath pathway)

¹⁶ FI*, NAS*, and DS, 2022 PR	¹⁶ FI*,	NAS*,	and	DS.	2022	PR
--	--------------------	-------	-----	-----	------	----

And therefore we'll never hit Carnot's efficiency,



¹⁷FI*, NAS*, and DS, 2022 PRE

Felix Ivander

Reaction Coordinate Master Equation for Tra

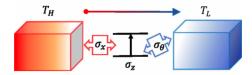
Recall in the derivation of BMR-QME, we cut the Dyson series to second order. Some nontrivial effects can arise **even** at weak coupling, if we had kept on going. One example is the $\sigma_x - \sigma_z$ type transport reported in Ref.¹⁸

¹⁸ Jianshu Cao et al., JCP 2020

Quantum transport beyond second order

Consider the generalized non-equilibrium spin-boson (NESB) model,

$$\hat{\mathcal{H}}_{SB} = \frac{\Delta}{2} \hat{\sigma}_{z} + \hat{\sigma}_{x} \sum_{k} f_{k,L} (\hat{c}_{k,L}^{\dagger} + \hat{c}_{k,L}) + \underbrace{\hat{\sigma}_{\theta}}_{\hat{\sigma}_{z} \cos(\theta) + \hat{\sigma}_{x} \sin(\theta)} \sum_{k} f_{k,R} (\hat{c}_{k,R}^{\dagger} + \hat{c}_{k,R}) + \sum_{k,\alpha \in \{R,L\}} \nu_{k,\alpha} \hat{c}_{k,\alpha}^{\dagger} \hat{c}_{k,\alpha}.$$
(20)



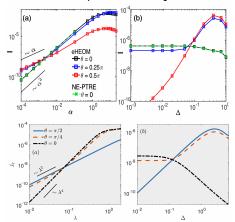
It could be shown that the heat current at steady state takes

$$j_{q} \equiv -\langle \dot{\hat{H}}_{B,L} \rangle = -i \langle [\hat{H}, \hat{H}_{B,L}] \rangle, = -i \lambda_{L}^{2} \langle [\hat{H}_{S}, \hat{V}_{L}] \rangle - i \lambda_{L}^{2} \lambda_{R}^{2} \langle [\hat{V}_{R}, \hat{V}_{L}] \rangle.$$
(21)

the first term is captured by second-order BMR-QME, but the second term is not. The latter is an **interbath** transport pathway, which also appeared as leakage for QAR at strong coupling.

Quantum transport beyond second order

Numerically intensive HEOM and NE-PTRE captures $j_q \propto \lambda^4$ current¹⁹, but RC-QME captures them just as well²⁰.



¹⁹ Jianshu Cao et al., JCP 2020
 ²⁰NAS, FI, and DS, JCP 2022

Felix Ivander

Reaction Coordinate Master Equation for Tra

The Polaron transform (the PT in NE-PTRE) is used to treat strong-coupling effects in very particular cases, modifying \hat{V} in return for dressing \hat{H}_s . Performing PT post reaction-coordinate mapping reveals interesting analytical results.

The RC-mapped Hamiltonian for Eq. (20) is

$$\hat{H}_{SB-RC} = \frac{\Delta}{2} \hat{\sigma}_{z} + \Omega_{L} \hat{a}_{L}^{\dagger} \hat{a}_{L} + \Omega_{R} \hat{a}_{R}^{\dagger} \hat{a}_{R} + \lambda_{L} \hat{\sigma}_{x} (\hat{a}_{L}^{\dagger} + \hat{a}_{L})
+ \lambda_{R} \hat{\sigma}_{\theta} (\hat{a}_{R}^{\dagger} + \hat{a}_{R}) + \sum_{k,\alpha} \frac{g_{k,\alpha}^{2}}{\omega_{k,\alpha}} (\hat{a}_{\alpha}^{\dagger} + \hat{a}_{\alpha})^{2}
+ \sum_{\alpha} (\hat{a}_{\alpha}^{\dagger} + \hat{a}_{\alpha}) \sum_{k} g_{k,\alpha} (\hat{b}_{k,\alpha}^{\dagger} + \hat{b}_{k,\alpha}) + \sum_{k,\alpha} \omega_{k,\alpha} \hat{b}_{k,\alpha}^{\dagger} \hat{b}_{k,\alpha}.$$
(22)

→ < ∃ →</p>

æ

PT-RCQME

Transform that Hamiltonian, $\hat{H}_{SB-RC} = \hat{U}_P \hat{H}_{SB-RC} \hat{U}_P^{\dagger}$, to the left reservoir with $\hat{U}_{P}^{L} = e^{\frac{\lambda_{L}}{\Omega_{L}}\hat{\sigma}_{x}(\hat{a}_{L}^{\dagger} - \hat{a}_{L})}$. This results to At low temperatures. $\Delta \rightarrow \Lambda e^{-\frac{\lambda^2}{2\Omega^2}}$ $\hat{H}_{SB-RC} = \left| \frac{\Delta}{4} \left[\left(\hat{\sigma}_{z} - i \hat{\sigma}_{y} \right) e^{\frac{\lambda_{L}}{\Omega_{L}} \left(\hat{a}_{L}^{\dagger} - \hat{a}_{L} \right)} + \left(\hat{\sigma}z + i \hat{\sigma}_{y} \right) e^{-\frac{\lambda_{L}}{\Omega_{L}} \left(\hat{a}_{L}^{\dagger} - \hat{a}_{L} \right)} \right] \right| + \Omega_{R} \hat{a}_{R}^{\dagger} \hat{a}_{R} + \Omega_{L} \hat{a}_{L}^{\dagger} \hat{a}_{L}$ $+ \lambda_R \sin\theta (\hat{a}_R^{\dagger} + \hat{a}_R) \hat{\sigma}_x + \lambda_R \cos\theta (\hat{a}_R^{\dagger} + \hat{a}_R) \frac{1}{2} \left[(\hat{\sigma}_z - i\hat{\sigma}_y) e^{\frac{\lambda_L}{\Omega_L} (\hat{a}_L^{\dagger} - \hat{a}_L)} + (\hat{\sigma}z + i\hat{\sigma}_y) e^{-\frac{\lambda_L}{\Omega_L} (\hat{a}_L^{\dagger} - \hat{a}_L)} \right]$ $-\frac{2\lambda_L}{\Omega_L}\hat{\sigma}_x\sum_{L}g_{k,L}(\hat{b}_{k,L}^{\dagger}+\hat{b}_{k,L})+(\hat{a}_L^{\dagger}+\hat{a}_L-\frac{2\lambda_L}{\Omega_L}\hat{\sigma}_x)^2\sum_{L}\frac{g_{k,L}^2}{\omega_{k,L}}+(\hat{a}_R^{\dagger}+\hat{a}_R)^2\sum_{L}\frac{g_{k,R}^2}{\omega_{k,R}}$ $+\sum_{\alpha}(\hat{a}_{\alpha}^{\dagger}+\hat{a}_{\alpha})\sum_{k}g_{k,\alpha}(\hat{b}_{k,\alpha}^{\dagger}+\hat{b}_{k,\alpha})+\sum_{k,\alpha}\omega_{k,\alpha}\hat{b}_{k,\alpha}^{\dagger}\hat{b}_{k,\alpha}.$

Set $\theta = \pi/2$ and perform an additional polaron transform on the right reservoir. At low temperatures and to lowest order in λ ,

$$\begin{split} \hat{H}_{SB-RC}^{\sigma_{x}-\sigma_{x}} &= \frac{\Delta}{2} \hat{\sigma}_{z} - \frac{\Delta}{2} i \hat{\sigma}_{y} \sum_{\alpha} \frac{\lambda_{\alpha}}{\Omega_{\alpha}} (\hat{a}_{\alpha}^{\dagger} - \hat{a}_{\alpha}) + \Omega_{R} \hat{a}_{R}^{\dagger} \hat{a}_{R} + \Omega_{L} \hat{a}_{L}^{\dagger} \hat{a}_{L} \\ &+ \sum_{\alpha} (\hat{a}_{\alpha}^{\dagger} + \hat{a}_{\alpha}) \left[\hat{\sigma}_{x} \left(\frac{-2\lambda_{\alpha}}{\Omega_{\alpha}} \right) \sum_{k} \frac{g_{k,\alpha}^{2}}{\omega_{k,\alpha}} + \sum_{k} g_{k,\alpha} (\hat{b}_{k,\alpha}^{\dagger} + \hat{b}_{k,\alpha}) \right] \\ &- \sum_{\alpha} \frac{2\lambda_{\alpha}}{\Omega_{\alpha}} \hat{\sigma}_{x} \sum_{k} g_{k,\alpha} (\hat{b}_{k,\alpha}^{\dagger} + \hat{b}_{k}) + \sum_{k,\alpha} \omega_{k,\alpha} \hat{b}_{k,\alpha}^{\dagger} \hat{b}_{k,\alpha} \\ &+ \sum_{\alpha} (\hat{a}_{\alpha}^{\dagger} + \hat{a}_{\alpha})^{2} \sum_{k} \frac{g_{k,\alpha}^{2}}{\omega_{k,\alpha}}. \end{split}$$

One bath excites RC \rightarrow RC excites system via $\sigma_x \rightarrow$ the other bath.

PT-RCQME

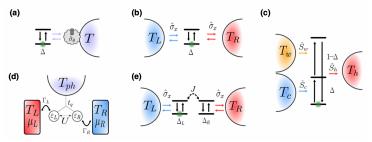
Set $\theta = 0$,

$$\begin{split} \hat{H}_{SB-RC}^{\sigma_{x}-\sigma_{z}} &= \frac{\Delta}{2}\hat{\sigma}_{z} - \frac{i\lambda_{L}\Delta}{2\Omega_{L}}\hat{\sigma}_{y}(\hat{a}_{L}^{\dagger} - \hat{a}_{L}) + \sum_{k,\alpha}\omega_{k,\alpha}\hat{b}_{k,\alpha}^{\dagger}\hat{b}_{k,\alpha} \\ &+ \Omega_{R}\hat{a}_{R}^{\dagger}\hat{a}_{R} + \Omega_{L}\hat{a}_{L}^{\dagger}\hat{a}_{L} + \lambda_{R}\hat{\sigma}_{z}(\hat{a}_{R}^{\dagger} + \hat{a}_{R}) \\ &- \frac{i\lambda_{R}\lambda_{L}}{\Omega_{L}}(\hat{a}_{R}^{\dagger} + \hat{a}_{R})\hat{\sigma}_{y}(\hat{a}_{L}^{\dagger} - \hat{a}_{L}) \\ &- \frac{2\lambda_{L}}{\Omega_{L}}\hat{\sigma}_{x}\sum_{k}g_{k,L}(\hat{b}_{k,L}^{\dagger} + \hat{b}_{k,L}) + (\hat{a}_{L}^{\dagger} + \hat{a}_{L} - \frac{2\lambda_{L}}{\Omega_{L}}\hat{\sigma}_{x})^{2}\sum_{k}\frac{g_{k,L}^{2}}{\omega_{k,L}} \\ &+ (\hat{a}_{R}^{\dagger} + \hat{a}_{R})^{2}\sum_{k}\frac{g_{k,R}^{2}}{\omega_{k,R}} + \sum_{\alpha}(\hat{a}_{\alpha}^{\dagger} + \hat{a}_{\alpha})\sum_{k}g_{k,\alpha}(\hat{b}_{k,\alpha}^{\dagger} + \hat{b}_{k,\alpha}) \end{split}$$

Emergence of an unusual bath-bath transport pathway which scales differently as the bath-system-bath pathway.

PT-RCQME was generalized by NAS, where strong coupling effects can be encoded at the Hamiltonian level simple enough to do analytical work $^{\rm 21}$

$$\hat{H}_{s}^{\text{eff}}(\lambda) = \langle 0|e^{(\lambda/\Omega)(\hat{a}^{\dagger}-\hat{a})\hat{S}}\hat{H}_{s}e^{-(\lambda/\Omega)(\hat{a}^{\dagger}-\hat{a})\hat{S}}|0\rangle.$$

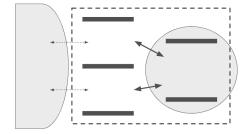


²¹NAS, Ahsan Nazir, and DS, PRX Quantum 2023

Felix Ivander

Reaction Coordinate Master Equation for Tra

Markovian dynamics with RC-QME²²



$^{\rm 22}{\sf NAS}$ and DS, 2021 PRA

Felix Ivander

Reaction Coordinate Master Equation for Tra

Reaction-coordinate master equation is an semi-analytical method to study quantum dynamics beyond Born-Markov. Signatures of strong coupling can explain complex models, for example quantum absorption refrigerators.

- Dvira Segal
- Nicholas Anto-Sztrikacs

★ ∃ >

Image: A matrix

æ